Facial Emotion Recognition Using Deep Learning
نویسندگان
چکیده
منابع مشابه
Facial Emotion Recognition using Deep Learning
Facial emotion recognition is one of the most important cognitive functions that our brain performs quite efficiently. State of the art facial emotion recognition techniques are mostly performance driven and do not consider the cognitive relevance of the model. This project is an attempt to look at the task of emotion recognition using deep belief networks which is cognitively very appealing an...
متن کاملEmotion Recognition Using Multimodal Deep Learning
To enhance the performance of affective models and reduce the cost of acquiring physiological signals for real-world applications, we adopt multimodal deep learning approach to construct affective models with SEED and DEAP datasets to recognize different kinds of emotions. We demonstrate that high level representation features extracted by the Bimodal Deep AutoEncoder (BDAE) are effective for e...
متن کاملSpoken Emotion Recognition Using Deep Learning
Spoken emotion recognition is a multidisciplinary research area that has received increasing attention over the last few years. In this paper, restricted Boltzmann machines and deep belief networks are used to classify emotions in speech. The motivation lies in the recent success reported using these alternative techniques in speech processing and speech recognition. This classifier is compared...
متن کاملMultimodal Emotion Recognition Using Multimodal Deep Learning
To enhance the performance of affective models and reduce the cost of acquiring physiological signals for real-world applications, we adopt multimodal deep learning approach to construct affective models from multiple physiological signals. For unimodal enhancement task, we indicate that the best recognition accuracy of 82.11% on SEED dataset is achieved with shared representations generated by...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1916/1/012118